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LSIECTION 1

FRIE, RIGID GUN TUBE WI1I1 ECCENTRIC BREECH AND

DYNAMICALLY UNBALANCED PROJECTI'LE

1.1 INTRODUCTION

Tlhe motion of a free rigid gun in a gravitationless environment

is investigated in this section. Also, the force and the moment that the

projectile exerts on the gun are derived. Gravity, acting on a free gun,

would cause the center of mass of the system to descend with constant

"acceleration g. The supports of an actual gun prevent a free fall of the

system. Consequently, it is questionable whether inclusion of gravity in

the analysis would make the mathematical model more realistic. Like gravity,

the resistance of air in the tube ahead of the projectile is an external
1

force. Its magnitude can be calculated by gas dynamics. However, in this

chapter, the air resistance on the projectile is disregarded. The system,

as it is conceived, accordingly has no external forces acting on it. Since

the relative motion of tho projectile with respect to the tube is assumed

to be given, the motion of the system is determined by the laws of conserva-

tion of rectilinear and angular momentum.

1.2 TERMINOLOGY AND NOTATIONS

The gun tube and the breech block together form a rigid body

called the "gun." The system consists of the gun and the projectile in the

tube. The point on the geometric axis of the projectile that lies closest

to the center of mass of the projectile is called the "geometric center" of

the projectile. The location of the center of mass of the projectile at the

initial instant is called the "starting point of the center of mass of the

14 projectile."

A bar over a letter denotes a vector. A caret over a letter

denotes a unit vector. A dot over a letter denotes the derivative with

respect to time t. Ignition occurs at the instant t : 0. The following

A notations are illustrated by Figure 1.

Point 0 is the center of mass of the whole system.

Point P is the center of mass of the gun.

4R. Courant and K. Friedrichs, "Supersonic Flow and Shock Waves (U),"

Chap. .II, .Tnterscience Publishers, New York, 1948.
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Point Q is the center of mass of the projectile at time t.
Point- Q' is the geometric center of' the proj.ectil(e at time t.

Point QO is tie starting point ofe the center oi" mass of' the

projectile.

Point Q' is the initial location of poX)int Q'.
F denotes a Galilcan reference frame; e.g., the earth.

x,y,z are rectangular coordinates fixed in frame F.

i',3',k' are unit vectors along the axes x,y,z.
A A A
i,j,k are. unit vectors along the principal axes of inertia of the

gun through point P.

a,),*," are unit vectors along the principal axes of inertia of the
projectile through point Q. None of them Is necessarily parallel to the

axis of the tube.

ao0bo0c0 are unit vectors along tile principal axes of inertia of

tile projectile through point Q0 0 when the projectile is in the starting

position.

v is a unit vector along the axis of the tube.

RO is tile vector 6.
+1i the vector OQ.

r is the vector PQ; ir = it] - R0 .
ois thle vector I1%

c is the vector Qq*Q.

CO is the vector Qo tQ0 .
s is the distance that the projectile has traveled relative to the

tube at time t.

X is the angle through which the projectile has turned relative

to tile tube at time t.

w -- X is the spin (angular velocity) of the projectile relative

to the tube at time t.

M is tile mass of the gun.

m is the mass of the projectile.

I 1,l2,I 3 are the principal moments of inertia of the gun with

respect to its center of mass P.

ii i2F i are the principal moments of inertia of the projectile

with respect to its center of mass Q.

9



iV is the angular velocity of the gun relative to frame U

w is the angular velocity of the projectile relative to frame F.

%.1 ,W2 ,1V3 are components of IV, defined by W iW j .W' , + kW3 .
- A A AWW are components ow , defined by w aw + bw + cwi.

, rlr, r3 are components of r, defined by r = ir 1 + jr 2 + Kr3 .

•0 " Po,0oZo.are the (x,y,z) coordinates of the center of mass P

of the gun; i.e., R0 = 0+.'X + Y'

-el0e2,e3 are compononts of the vector i, defined by 0 = ieI +

e2 + ke3 .

0,f3,y are direction cosines of the axis of the tube, defined by
AA

v = i + + ky
__ At!t ... o ,opot oo d0efineda by i' = i ÷

CA A C r components of vector Fdfndb . t
-j + kc

,. ,anmi,n. are direction cosines of vectors i, j, k with respect

"to axes (x,y,z), defined by the matrix

A A

"•,"1 "'1 1I

.. 2.. 2 u2

Sk 913 mi3  nf3

a. ,bi• e. are direction cosines of vectors (a,b,c), defined by the

matrix

aI a 1  a2  a3

• '.•:1 )1 Ib2  1)3

1 2 3

;a.,$,iy. are direction cosines of vectors (a,boc), defined by

"the matrix
4 .A A.

A

b a"0 2 62 Y2

"0 Co 3  $3 Y3

10
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11 is the angular momentum of the gun about point 0.

1i is the angular momentum of the projectile about point 0.
Io0(t) is the pressure ofi the gases on the breech.

P1 (t) is the pressure of the gases on the base of the J)rojoetile.

A is the cross-sec tionatl area of the bore.

F is the resultant force exerted by the projectile on the tube.

Ni is the moment about the center of mass of the gun of the

contact forces that the projectile exerts on the tube.

M' is the noment about the center of mass of the projectile of

the contact forces that the tube exerts on the projectile.

g is the scalar acceleration of gravity.

g is the vector acceleration of gravity (directed vertically

downward).

R is the resisting force of the air ahead of the pvojectile

Mil
M + m

M1 ,M2 ,M, are components of vector ri, defined by F1 = IM + J2 +
kM3.

.1F dfned byFV' +
1',I2,F3 are comontents of vector de fi2 +

1F 3 .

nbac+ 3f., + £9 is the correction to force PF to account for

unbalance oft the projectile.

1. ýi CONSIiltVATION 01 NOMlNTINUM

SLnce there are no external forces, the center of mass 0 of the

system remains fixed in Frame F. Consequently, in this section, 0 is taken

to be the origin of coordinates (x,y,z) . At time t, the center of mass Q of

the projectile lies at point RI = + r (Figure 1) . Since tei origin 0 is

the center of mass of the system, and since momentum of the gases is

neglee tod,

MR 0 + mrt 0 (1.1)

Consequent Iy,

M + 0 + F- = o

11



Therefore,

-mr Mr M
TO M-+ M + m m R0(12

Equation (1.2) signifies that the vectors R and R are collinear.
0 1

Consequently, point 0 lies on the line PQ. Equation (1.2) yields

- . a Mm -- -

MR x R + mR x R =M r x r (1.3)
0 0 1 1 Mm

Equation (1.3) will be used later.

The direction cosines of vectors (i,j,k) with respect to axes

(x,y,z) are (ti.min.) (see Notations). Also

Ko = i'X0 + i'y + kIZ 0

Equation (1.2) yields

-m AA

RO=M (irl + Jr 2 +kr 3 )

Also,

i -ii + m jI n k'

32z' + m2 j' + n2 k'

A A A

k + i mj' n k'

Consequently,

Xo + m(r,£ 1 + r2 t 2 + r3 k)

12



Yo ---- (,rml + r +r+ M+m l 2m2 r 3 m3 )

z M -+m (n + r 2 n2 + r 3 n3) .4)

1.4 ANGULAR VELOCITY OF THE PROJECTILE

The absolute angular velocity of the projectile is

- A

"w awI + bw + cw
2 3

Let (a',b',c') be an orthogonal triad of unit vectors, such that c' v,

where v is the unit vector along the axis of the tube. Then w may be written

alternatively as follows:
A +

a'wI' + t'w2' +cw
2 3

The angular velocity of the projectile relative to the tube is a

vector of magnitude w = X that is coaxial with the tube. The variable W

the spin; it is regarded as a known function of t. Accordingly, the c'

component of the absolute angular velocity of the projectile is

SA

w ' = 1 + W C

where W is the angular velocity of the gun. The a' and b' components of the

absolute angular velocity of the projectile are the same as those of the tube,

since balloting is excluded. Accordingly,

w1 ' =Ia' t W W'= ' W
'2

Consequently

- A A -A - A

w = a'a' • W + b'b' • W+ c'c' • W + Ct'

The notation a'' W , e t., is short for a'(a', '-). Since a" • is a
scalar, a'a' ' W denotes multiplication of vector a' by the seaar a' aW.

13



However, the following relationship is an identity:

a'a - W + b •b' - W c'c' •W

A A

Also, c' = v. Consequently,

W= W + v (1.5)

Since,

A A A A- A- A

w= aw + bw2 + cw3 ; w a ; 2 w b w 3 W C

Also,

A f

ajia a + ka3

b ib + jb + kb
1 2 3

AA A A

c^••cI + jc 2 + kc3

Consequently, Eq. (1.5) yields

W =alW + a2W + a3W + (aI + 6a + ya3)W
1 1 2 2 a3W3 +(a 1 +a 2 +a 3)

w bW b + bW +bAW+ (ab + ab + yb3)W
2 1 1 2 2 3 3 1 2 3

w3 C1 22 + c 3 W3 + (ocI a c2 ÷Yc3 )W (1.6)

A A -

1.5 THE VECTORS a,b, c,E:

So far, the vectors a, b, c, whose componer-, '.ppear in Eq. (1.6),

are undetermined. The displacement vector field of a igid body that under-

goes a rotation about an axis that is oblique to the coordinate ax, - is
A A A

derived in Appendix A. Vectors a, b, c are imbedded in the projectile and

14



move with it. Accordingly, Eq. (A-2) in Appendix A applies to them. The

vector p in Eq. (A-2) may be given various special designations. If p =

a., a = R. If p =bo b = R, and likewise for c0 and c. Consequently,

a = vxaosinx + vv * a0(l - cosx) + a 0 cosX

AA

b vxb sinx + v%, 1b - cosX) + b cosX0 0

c= vxC sinx * vv (l - cosx) + c cosx (1.7)
A 0 0

It can be shown directly from Eq. (1.7) that (a,b,c) are an orthogonal triad

of unit vectors, as they should be. Equation (1.7) also yields

A A A A A AA A A A A

X) a = V * a; = V ; * c V. c (1.8)

Equation (1.8) reflects the fact that a rotation of a body about an axis does

not change the angle between the axis and any line that is scribed in the

body.

The direction cosines of the vectors (a0,2o) are given by the

following matrix:

AA

aa 0 a 1 1 Ya

b0  ca2  12 Y2

4 A
c cca0 3 3 Y3

V at y (1.9)

The direction cosines in Eq. (1.9) are known constints. Equations (1.7) and

(1.9) yield

- See footnote on page 13 and Appendix C.
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S--[(BY1 - y8 1 )sinx + a(aa1 + r 1 + - cosx) + alcosx]

+ 5 [(YctI - aYl)sinX + 1 ( I+ yy 1 )(1 - cosx) + 81 cosx1

+ k[(aI - aal)sinX + y(aaI +SS6 + yy 1 )(1 - cosx) + YlCosx]

b= [(gy2 " Yo2 )sinx + a(aa + + YY2)(1 cosx) 4 a2 cosx]

S+ 2 [(Y - 0•Y 2 )sinx +(xcx 2 + yy2 )(1 - cosx) + f 2 cosx]

-,+ [( a - g 2 )sinx + +(ctt + yy 2 )(1 - cosx) + Y2 cosx]

c = i L$y 3 - ya 3 )sinx + c(cs3 + + yy3 )(1 - cosx) + 0 3 cosx]

+ 5 [(Ya 3 - cy 3)sinX + y(cct3 + + YY3 )(i - cosx) + Y3 cosx]

+ j [(yct - % 3)sinX + y(i 3 + 131 + YY3)(1 - cosx) + Y3cosx] (1.10)

Equation (1.10) determines the direction cosines (ai,bi,c.) of vectors

(a,b,c) as functions of t.

If p is set equal to O in Eq. (A-2), R = c. Since O is
A ^ - 0 0perpendicular to V, N - c0=0. Consequently, by Eq. (A-2),

C Ve Si 0cos(1.11)

Since E " = 0, it follows from Eq. (1.11) that c- v 0, as it should be.

"Also, Eq. (1.11) yields

C = E cooCo (1.12)

where e is the eccentricity of the projectile.

16



1.6 THE VECTOR PRODUCT Y x r

The vector product r x r occurs in the expression for the angular

momentun of the system about point 0. By Figure 1,

r = e + Vs + c (1.13)

Hence,

r e- As As E. r~e-+Vs+Vs+c

In the reference frame of the gun, e and V are constant vectors. Conse-

quently,

A - A

e = iV x e v W= " x v (1.14)

Therefore,

, __ ,,^A A
r = W x e + W x vs + VS + E(1.1)

Since co0  x COP Eq. (I.11) yields (see footnote, page 13)

C= vIV E sinx - OV IVsiny + wv x C°cosX + W x E 0COsx - WEosinX (1.16)

Equations (1.11), (1.13), (1.15), and (1.16) yield

- __ A A

r = e + Vs V , x Cosinx + c-cosx (1.17)

r W x e+ W x vs + Vs + V11 6 0S inx - 0V WsinX

+ WV X EoCOSX + IV x c-cosX - weVsinX (1.18)

Equation (1.18) may be written as follows:

-i -- A'+ A1 --

r r r vs v+v x oCOsx - woe sinx (1.19)

17
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Hence (see footnote, page 13),

rxr Wr2  r r W + r x Vs +wvr cosx- we Avcosx

- wr x eOsinx (1.20)

With

r = ir 1 + jr 2 + kr 3 , W = iW1 + jW2 + kW3

.;=i"•c + j] + ky and co = ic 1 + jC2 + ke3

Eq. (1.20) yields

S 2+ 2rW - W 4

r x r = 2{(r2  r 3 2)W 1 - r1 r2 2 1 3 3 (yr 2 " Br3)s

. [m(r 2 e 2 + r 3 3 ) -3 l(or 2 + yr 3)]Icosx

- (r 2c 3 - r 3 E 2 )wsinX} + J{-r 2 r W. + (r 3
2 +

- r 2r 3W3 + (ctr 3 - Ir )S + [ý(r 3 3 + rIC1)

- C2 (yr 3 + arl)IwcosX - (r 3E1 - rl E3 )wsinX}

4.• + k{-r 3 rW 1 - r 3r 2W2 + (r 2 + r 2
2 )W3 + (Or 1 -r

3+ 1Y(rl1 + r 2 2) 1 23( )rl + 1r2 )]ac)sx

.(r1-C r 2 E1 )wsinX} (1.21)

18
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1.7 ANGULAR MOMENTUM

The angular momentum of the gun with respect to a nonrotating

observer at point P is 2

•II1W + 'I2 2 3+ ýlW3

Consequently, by Eq. (B-3) in Appendix B, the angular momentum of the gun

with respect to point 0 is

A A A

Hf = iI1W1 + JI2W2 + kI W3 + MR0 x R0 (1.22)

Similarly, the angular momentum of the projectile about point 0 is

A A

h =ai1w1 + bi2w2 + ci3w3 + mRI x R1 (1.23)

6, A 
0ýA A

The vectors a G, C are resolved into i, J, k components by the equations,

A Aý A

a= la1 + ja 2 + ka3

b= ib1 + jb 2 + kb3

c cI + JC2 + Kc3

Consequently,

h i(:1ilWI + bi2 w2 + C1 i~w 3 ) + j(a 24l + b 2'2w2 + c2'P3)

+ k(a3iW + b3 i2 w2 + c 3 i 3 w5) + mRI x R1  (1.24)

Consequently, in view of Eqs. (1.3) and (1.22),

2H. L. Langhaar and A. P. Boresi, Engineering Mechanics -Tj~natecs (U), McGraw-

Hilt., New York, 1959, Art. 15-10.
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ff + 9 '1(1IW + a i w + b iw +C

11 111 1 22 ci 3w3)

+J(1 2W2 + a 2iIwI + b2i2V2 + c 2i 3w3 )

A(~ mm -+ k(I3W3 + a 3 i + b3i2w2 + C3i3w3) + r x r (1.25)

The term r x r is expressed in the form (-)i + (-)j + (-)k by

Eq. (1.21). Consequently, Eq. (1.25) represents I + h in the form

f+ + = iA + jB + kC (1.26)

By the law of conservation of angular momentum, i + h is a constant vector.

However, in general, (A,B,C) are not constants, since the gun moves and

accordingly (i,j, are time-dependent vectors. The constant vectors (i),j',

k') may be introduced by means of the equations,

i=X i' + m j' + nlk'

J 2i' + i 2 ' + n 2 k'
2 2  2

k = 3 Ai +m

Thus, 1H + Ii is expressed as follows:

H" + = i'(£ 1 A + £21B + £ 3 C) + j'(m A + m 2B m 3 + l,(nA

+ n2  + n C)
2 3

Accordingly,

£iA +9£B + Z C -K
1 2 3' 1

m A + m2B m, 3C K2
1 2 3' 2

20

~~~~~~ . . . - - - - - i - .-. " . • i l . i . i .- i . . .



n1 A + n2 B + n 3 C ± K3  (1.27)

where K1 , K2 , K3 are constants. Hlowever, Eq. (1.27) introduces a complica-

tion, since (Zi,mi,n.) are unknown functions of time.

A great simplification occurs if the system is initially at rest,

since then ff + h = 0 and K1 = K = K = 0. Consequently, A = B C = 0.
1 2 3

Attention is restricted to this case.

Provisionally, the following notation is introduced:

M~m

The terms X, Y, Z are given by Eq. (1.21). With Eqs. (1.25) and (1.28), the

law of conservation of angular momentum, H + h = 0, yields

I W1 + a1ilW1 + b1i2w2 + Cli3w3 + X =0

I2W + a ilw + b i w + c iw + Y =0
2 2 2 11 2 22 2 33

I 3W3 + a 3iwI + b3 i 2w2 + c3 i 3w3 + Z = 0 (1.29)

Now wV, w2, w3 are given by Eq. (1.6), and X, Y, Z are given by Eq. (1.21).

For brevity, the following notation is introduced:

~Mm (1.30)

Thus, the following equations are obtained from Eq. (1.29):

[ a 2 +*b12 i + 2 + +j(r 2 +r 2 )]W + [aa 2 i 1I12÷a2i 123 crrI W+ x3bb + c1 1C 1 23 13 133

+ bl1b 2 i2 + CleC2 i 3 - rlr I2]112 + [ala3i 1 + blb 3i2 + Cl1C 3i.3

pr- prlr 3 ]W3 = -a1i1(cta1 + $a2 + Ya 3 )w - b1 i 2 (1b 1  ) 2 + Yb3 )w
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- cli.(aceI + OC2 + yc3)w - ij(yr 2 - r3 )A

-a(r2c2 + r 3c 3 )WcosX + PC 0(r 2 + yr 3)0•cosX

+ Pj(r2 c 3 - r 3 c2 )wsinx

[a 1a2 i 1 + bIb 2 i 2 + c1 c 2i 3 - lr 1r 2 ]W1 + [12 + a2 2i + b22i2

2 + 2~

ec2 i 3 + (r 3  + r 1 2)]W2 + [a 2 a3 iI + b2b 3 i 2 + c2c 3 i 3 - jir2r 3 ]W3

= -a 2 i 1 (ocaI + $a2 + ya 3 )tw - b 2 i 2 (cb 1 "+ Ob2 + yb3)W

- c2is(aC1 + + Yce)w - (ocr 3 - ,yrl)S - 11O(r c

+ rl 1 )Wcosx + lie2 (yr3 + arl)wcosX + p(r 3 e 1 - r 1 3 )t)sinx

[aa3 a1 + b 3b1 i 2 + e31 i3 pr 3 rI]W1 + [a 2 a3 i1 + b23 i2

+ c2 c 3i 3 - pr 2 r 3 ]W2 + [13 + a3
2 i 1 + b32i2 + c32i3

+ (r1 2 + r22)]W3 = -a 3i 1 (aa1 + Ba2 + ya 3 ) W - b 3i 2 (ab1 + Ob2

+ yb 3 ))W - c 3 i 3 (cac 1 + Sc 2 + Yc 3 ))W

- (Or- or 2)s 2 y(r 1e 1 + r 2 C2 ) WcosX

+ PiC3 (ar 1 + Or 2 )wcosX + P(rl1c2 - r 2 E1 )Wsinx

(1.31)

The unknowns in Eq. (1.31) are W1 , W2 , W3 . The quantities I1,

12' 3, J' 1 i3 2, 3, E€, t1 1 2, p3 are known constants. The
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quantities s, X, W are regarded as known functions of t. Perhaps the

simplest way to determine X is by the relationship,

X = Wdt (1.32)

Sinco el, e2, e 3 are known constants, Eq. (1.17) determines rl, r 2 , r 3 as
A A A

functions of t. By Eq. (1.10), the (i,j,k) components (ai,bi,ci) of
A AA1vectors (a,b,c) are known functions of t. With a computer program, Eq.

(1.31) can be solved for any sequence of values of t that co'vers the period

in which the projectile is in the tube. Thus, the functions Wl(t), W2(t),

W3 (t) can be tabulated and plotted.

1.8 I4OTION OF THE GUN

A knowledge of the functions Wl(t), W2 (t), W3 (t) does not

immediately determine the motion of the gun in reference frame F. It is

necessary to determine the direction cosines (ki,mi,ni) as functions of t.

When these functions are known, the motion of the center of mass of the gun

is determined by Eqs. (1.4) and (1.17), and the absolute orientations of the

principal axes of the gun are determined as functions of t.

'The problem of determining the functions Zi, mi, ni is purely one

of kinematics of a rigid body. The results are3

k'1 = I3k2 - I2k3 '2 = 1k3 " IV3£1 '3 = W 2 Y I-lk2

inl = W 3 -2 . 2 In 1In3 - W 3 ml ;m 3 = W 2 m I W12'

n1 = W3n2 - W2 n3  ; n2 =1 n3 - W3 nl ; n3 = W 2nI - W1n2  (1.33)

Since the functions W1 , l 2 , W' 3 have been determined, Eqs. (1.33) are

differential equations that determine the functions £iA mi, ni when the

initial values are given.

3 1t. L. Langlhaar, Enerqjy MAlthodIs in A'plt.d ?"o.c.hanios (U), John Wil ey and
S13ons, New Yol-k, 1962, Chap. 7.
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instead of work~i tip with t:he nine unknown~ funictions Z , 111i Iii

it is, poss.i ble to %yor.k W i th three liul or mngles (, ,i)by inemis: of' t-lie

followinig relatiows3

in csi siish - cosocsiucosJ

ni = infecosqP

sbl~cos~+ COSEICOS+ipflq))

in = -scOS~Osq) +cososi~.Lfl~iflhl)

2

Z. stinOcossd

i, sinlOs i l

11 coso (1.34)

The (lit ereiitial equations for 0, 41, ) are 3

0+

2d



E quations (1.35) aro easily solved algebraically for the derivatives. Thus,

(d0 = IVls.inq) ,. W cosq)

t(I
t (lCOSip - wVsnqcc

W- (Wlcosq, - W sinq')cote (1.36)

According to an existence theorem in the theory of ordinary first-
4

order differential equations,there is a unique solution 0(t), (ý(t), qi(t)

of Eq. (1.36) which takes given initial values (00,+0A) 0 ), provide.d that 0

avoids the singular values, 0 = 0 and 0 - ir. After 0(t), ý(t), qP(t) are

determined, ( ini'1 in.) are determined by Eq. (1.34).

Thc existence theorem also applies directly to Eq. (1.33), i.e.,

there are unique functions i(t) , mi (t) , n i(t) that satisfy liq. (1.33) and

that take given initial valuos (%iMi0,ni0). Although Eq. (1.33) involves

nine dependent variables, it has the advantape thtlt the Qqw'tions are

l inear.

A numerical solution of t:he differential equations appears

fcasi1)1o. it is not necessary to project far into the future, since the

projectile quickly leaves the muzzle.

1.9 CASE OF A BALANCED PROJECTILE

If the projeocrtile is perfectly balanced iI = i2 and C. = c2

03 0. Also c = Q, c 2  , c y, 'yl'heo the first of Fqs. (1.31)

becomes

IT + (a12 + r 3 2 )W
T1 1 1I .+ *i) + (2 ,,> * I ). ]I1

+ (i (aia( + b 1b2 ) + 43i 3 - I11,r 2 1W 2

I 1 3 1 3 6 3W+ i 1(al 1J. + 1)ib)) + ayi3 .. 3]•

7,------
IE,. L. l7U• , Ov-,L.I IP DZIlerentiiai.' , t-F) Ott., (1I) JDoo,'_•2•., ubý ._, Wo. o York, i944,
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2 2

w-l [aal + 8ala2 + ya a3 + abl + Bblb2 + y(blb3

_ i(a 2 + B2 + y 2 )w - l(yr 2 $r r3)

In view of identities among the direction cosines, this reduces to

+ 1 + a2 G(i3  1i) + p(r 2
2 2 r3 2)]WI + [la(i 3 - i)

- 1rlr2IW2 + [cy(i 3 - il) - 11rlr 3]W3 = -ai 3w - P(Yr 2 - 8r 3)s

(1.37)

Likewise from the sec.ond and third of Eqs. (1.31),

[a8i 3  1 il) 1 irlr 2]W1 + ['2 + ii + 32 (i - il)

2 2(r3 + r)]W 2 + [$y(i 3 - i 1 ) - rrW

= -ýi 3p - ji(or 3 - yrl)s (1.37)

[ty(i 3 - i1 ) - ir 3 r 1]W1 + [By(i 3 - iI) - Tr3r 2]W2

+[3 +i 3 12 1 r223)1W

+ [13 +i1 +y
2 (i3 - i 1 ) + P(r12 + r2 2 ]W3

c-yi w (Br -r2)s (1.37)

Equation (1.37) is a simplified form of Eq. (1.31) that applies only if the

projectilc is perfectly balance%.

1.10 EIJEM•NTARY RELATIONS BETVEEN FORCES AND MOMENTS

The preceding theory deals with the motion of a free rigid gun.

The forces and moments of interaction between the projectile and the gun also

are of interest. Although gravity has been neglected, it wculd have

only a small effect on these forces and moments.
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The resultant force of contact that the projectile exerts on the

tube is designated as V. The force of contact that the tube exerts on the

projectile is -F. if the gun is regarded as a free body, the net external

force on it is

F - ApoV (1.38)

If the projectile is regarded as a free body, the net external force on it

(neglecting resistance of air ahead of the projectile) is

-F + ApIv (1.39)

The detailed forces of contact that the projectile exerts on the

tube are designated as fl' f2' f3" . Hence,

F = f_. (1.40)

Let force f. act at the point r + X., where r is the vector from the center-1

of mass of the gun to the center of mass of the projectile. Then the

moment that the forces K. exert about the center of mass of the gun is1

R (T + -A) x _f T r x T + Exi x T. (a)

The forces of contact that the tube exerts on the projectile are -'_f -f 2 '

-f 3 .' The moment of these forces about the center of mass of the

projectile is

, - EX. x f. (b)1 1

By Eqs. (a) and (b),

M= r x F - M (1.41)
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The moment about the center of mass of the gun of all external

forces that act on the gun is

- x vp 0 A (1.42)

where e is the vector from the center of mass of the gun to the initial

location of the geometric center of the projectile. The moment about the

center of mass of the projectile of all the forces that act on the projectile

is

M1 E x Vp1 A (1.43)

where T is the vector from the geometric center of the projectile to the

center of mass of the projectile. If the center of mass of the projectile

is on the axis of the tube, e = 0.

1.11 MOMENT OF FORCES ON THE GUN

The resultant moment M exerted on the gun by the forces of

contact with the projectile is resolved into components along the principal

axes of inertia of the gun through its center of mass, i.e.,

M =iM 1 + jM2 + kM3

Also, by definition,

= i + + ky

4 A A A

e= ie 1 + je + ke (1.44)
1 2 3

Consequently, by Eq. (1.42), the net moment about the center of mass of the

gun is

* [M1 - PoA(Ye 2 - Be3 )] 4 jIM2 - P0 A(ae 3 - ye1 )]

+ k p - A(Sel ce 2)] (1.45)
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The components M. are determined by Euler's dynamical equations for a rigid

body ; namely,

dlvd1

I 1 -dt" (12 - 13)W2 W3 + P0 A(ye 2 - 5e 3) = M1

dW2
12 i - (13 I) W1W1 + P0 A(ae 3  yee1 ) = M 2

dW
13 ai - (11 - 12AW1 W2 + P0 A(Be1 - cte 2) = M 3  (1.46)

Since (W1 ,W2 ,W3 ) are obtained from a computer program for the solution of
Eq. (1.31) (or, in the case of a balanced projectile, from Eq. (1.37)), the

derivatives dWi/dt can be obtained by numer'cal differentiation. The

quantities (ct,8,y), (el 9 e2 ,e 3), and (Ii,12,13) are known constants.

Consequently, Eq. (1.46) determines 9, provided that the breech pressure

P0 (t) is known.

1.12 FORCE OF A BALANCED PROJECTILE ON THE TUBE

The angular acceleration of the gun is W. Since V = iI1 + jW2

+ kWV3,

W = iWI + jW2 + kW3 + iW1 + jW2 + kW3

Also,

i = W x i = jW3 - kW2

A A A

j Wxj =kW1 - iW3

k = W x k = iN2 - jW1

Consequently,
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iW1  2 + kW = 0j 2,3-

-'Therefore,

W iW + ÷W+ KW3  (1.47)
1 2 3

The center of mass of the gun is located in a Galilean reference

frame by vector Ro, which is given by Eq. (1.2). The external force on the

gun is MR Consequently, by Eqs. (1.38),
0*

F Ap0 v = -pr (1.48)

where vi = Ntn/(M + m).

A balanced projectile is considered in this article. Consequently,

by Eq. (1.13),

r = e + vs (1.49)

Therefore,

- - A A.

r r e+Vs+Vs

However,

e W IV x e and . = W x v

Therefore,

r = W x r + vs (1.SO)

Differentiation of Eq. (1.50) yields

r • x r + x r vs + vs
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Hence,

r = Wx r + W- x (-W x r) + 2W x vs + (1.51)

By expansion of the vector triple product, this becomes

r =W x r + W W r - W2 + 2W x Vs + Vi (I.52)

Consequently, by Eq. (1.48),

S - - -2Ap0v - P(W x r + W W • r - rW + 2W x Vs + Vg) (1.53)

With Eq. (1.53), the net force on the gun is determined by Eq. (1.38), and

the net force on the projectile is determined by Eq. (1.39). In view of

Eq. (1.39), the axial component of force on the projectile is

-F• v + Ap (1.54)

For numerical computations, Eq. (1.53) must be expressed in

scalar form. The components of F are represented by

F= iF1 + jF 2 + kF3

*, Also,

V= ia + j8 + ky

and

r = ir ÷ jr2 + kr3

In view of Eq. (1.47),

Sxr j J23 r 3 r 2 ) + j(i/r r + r W r
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Accordingly, Eq. (1.53) yields

F1 = c(Ap0 - -) r W3r 2) - 1W(W 2r 2 + W3r 3)

+ ir 1 (W2 2 + W3
2) - 21(yW2 - 2W3)

F2 -- (AP 0 - •z) - •(~l- Wlr 3) - iiW2 (Wl r1 + IW3r 3)

+ Tir 2 (W3
2 + W1 2) - 211s(yW3  yWI)

F= y(Ap 0 - 1)- r2 1i(i3r - I 2 r3) - iW3(W1rI + W2r 2 )

+ pr 3 (W1
2 + W2

2) 21sU3W 1 - W2) (1.55) (

* The solution of Eq. (1.37) provides the functions W1 , W2, W3. Consequently,
* the force F is determined by Eq. (1.55), provided that the center of mass

* of the projectile lies on the geometric axis of the tube. Then thc moment

on the projectile is determined by Eq. (1.41), which, in expanded form is

2 3  F2 -M1

F2' =yrF - rF3 - r2

31 13 2 21 311 22

M'-rF -rF -M (1.56)

3 1 21 3

1.13 FORCE OF AN UNBALANCED PROJECtILE ON ThE TUBE
If the projectile is dynamically unbalanced, t and r are given by

Eqs. (1.17) and (1.19). The angle x through which the projectile has

*turned relative to the tube is -

x = Jwt ; F -F (1.57)

,0
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Differentiation of Eq. (1.19) yields

" " ' . ' 0A "^ - " _0
r = W x r + W x + vs + vs + wv x C0 cosX + v x 0 cosx

+cWv x 0 cosX - WvxC0sin)(-w ~0 sinx - we 0sinX - , 2
0 cosx

Now r can be eliminated by Eq. (1.19). Also,

v = W x v and co = W x e 0

Consequently,

r - W x r + w x [V K r + vs + wv x eocosx - oSinxI

A* A.. - A -

+ W x vs + vS + (v x C cosx + W(W x v) x 60 cosx

+ Wv x (W x C-0 )cOsX _ 2 v Cosix _- WC0sinx

- wW x -0 sinx - w c-cosx

Since

(WxV) x E-o + vx (w x C 0 0

this reduces to

r = I x r + W x [ x r + 2vs + 2wv x C0 cosX - 2w 0 sinX]

+ vS + W(v x o0 cosx - 0 S1inx) - 03 (V X 0cosx)

(1.58)

If0 = 0, Eq. (1.58) reduces to Eq. (1.52).
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For brevity, vectors u and " are defined by

VXC0 cosX - c'0 sinx u- Iu 1 + ju 2 + ku 3

V x E 0sinX + 0 Cosx = v = iv 1  jv 2 + kv3  (1.59)

A A

Also, co ic+1 + J32 + kc Y Consequently,

uI= ( 3 - yE2 )co' - •lsinx

= (ye 1 -ocI 3 )cosX - c2 sinX

u 3 = (CIE:2 - 81)cosx - £3sinx (1.60)

v= (OC3 - yE2 )sinX + elcosX

"2= (YeI ae 3 )sinx + 62cosx

V3 = (ctc 2 - 8e 1 )sinX + e3 cosX (1.61)

By Eqs. (1.48) and (1.58),

•, =A~o '" . .. 2-
-PAro - 2wpW x u - vwu+ (1.62)

where r is the value of r when c = 0. Hence, r is given by Eq. (1.52).

Set

F' Apov -1 ro (1.63)

Then F' is the expression that was obtained for F in the case of a balanced

projectile (Eq. (1.53)). Set
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= ' + f;f if 1 +jf kkf (1.64)1 2 3

Then f is the correction to T' to account for unbalance of the projectile.
In scalar form, F1 is given by Eq. (1.55). By Eqs. (1.62), (1.63), and

(1.64),

f= u R[- x 'J - u + wv (1.65)

Hence,

f= I [-2'2(W 2 u3 " W3u 2) - Iu * 2 Vl

f 'A [-2w(W3u1 - Wlu 3) - wu2 + W2 V2 ]

f3 [-2w (WU2  W - u + W v (1.66)

The quantities (f 1 ,f 2 ,f 3 ) are the corrections to be added to
(F 1 ,F 2,F 3 ), respectively, in Eq. (1.55) to account for dynamic unbalance of

the projectile. It is to be recalled, however, that W is affected to some
extent by unbalance of the projectile. Consequently, (W1 ,W2 ,W3) are to be

computed by Eq. (1.31) rather than by Eq. (1.37). On the other hand, the

quantities (W1 ,W2,W3 ), determined by Eq. (1.37) are to be used in conjunction
with Eq. (1.55). The moment R' on the projectile is given by Eq. (1.56) in
either case. Equation (1.46), which gives the moment M of the contact
forces that the projectile exerts on the gun, is valid whether or not the

projectile is dynamically balanced. It is to be noted that Eqs. (1.11) and
(1.59) show that E = v.
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SECTION 2

FORCES AND MOMENTS ON A RIGID IMIOVABILE GUN

WITH AN UNBALANCED PROJECTILE

2.1 INTRODUCTION

In this section, the gun is considered to be rigid and immovable.

The motion of the projectile in the tube is prescribed. The net force and

moment acting on the projectile accordingly are determined by the dynamical

theory of a single rigid body. Dhe effect of gravity is neglected, but it

would merely augment the force F by the term mg, where g is the vectorial

acceleration of gravity. Gravity would not alter the moment equations.

2.2 KINEMATIC RELATIONS

Since the angular velocity of the gun 4-s zero, the angular

velocity of the projectile is

A

W = (2.1)

where, as before, w is the spin of the projectile, and v is a constant unit

vector along the axis of the gun tube.

Equations (1.7), (1.8), (1.9), (1.10), and (1.11) again apply.

Since the origi-1 0 of coordinates (x,y,z) is now arbitrary, it

is conveniently taken to b- the initial geometric center Q of the

projectile (Figure 1). Then R = e = 0, since the center of mass of the gun

is irrelevant. Also, the axes (x,y,z) may be oriented in the directions
A A A

aO, bO, c of the initial principal 'axes of the projectile. Then a0 = 1,

b 0 = j, and c 0 ± k. Consequently,

, =1 ; Y1 =0

* (2 = 0 ; y 2  0

3= 0 0 Y 0 ; 1 (2.2)
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In view of Eq. (1.8) and Eq. (2.1), wI w , a - w\ a = wv • a 0  1 0V i

w= , and likewise for w2 and w3. Consequently,

w - i: ;w 2 =(kXX ; w3 =oy (2.3)

Hence,

Wl 1• w2 WO ; w3 -WY (2.4)

Since v and e0 are constant vectors and w X, by Eqs. (1.11) and

(1.59)

- 2- -

e W C + Wu (2.5)

Since = e = 0, the location R of the center of mass of the01
projectile is (Figure 1)

"r = = Vs + - (2.6)

A

, Consequently, since v is a constant vector, the acceleratior. of the center of

mass of the projectile is

r = Vs + c (2.7)

Equations (2.5) and (2.7) yield

• " , .. 2- .-
r gs - w c + wu (2.8)

With Eq. (1.10), LFq. (2.2) yields

A A2 2 A

a i [t + ( 43 Y )cosx] + j [c(3(l - cosx) ysinx]

+ k [ya(l - cosx) -sinxl
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A 0 2 2)os
b [0(0(1 - cosx) - Ysinx] +[I + (y2  a 5 COSX]

+ k [3y(1 - cosx) + ctsinxl

c i i[yOC(1 - cosx) + ýsi2lx] + j [3y(l - cosx) - asinx]

+ + ((2 + 02)COSX] (2.9)

Equation (1.11) yields

x xv V^x F 0 x )sinX +F x vcosx

Hence,

= X " + C0 x Vcosx (2.10)

2.3 FORClS ON THE GUN AND ON THE PROJECTILE

The force that the projectile exerts on the gun by direct contact

is denoted by F,, as before. The force of contact that the gun exerts on the

projectile is 4. The net force on the projectile is accordingly

-F + v (pl - R) (2.11)

where R is thle resistance of air ahead of the projectile. In view of Eq.

(2.8), Newton's law yields

-F + v(pIA - R) = vms - n + n~u (2.12)

Hence, by Eqs. (1.11) and (1.59)

"F= v(plA - R - mr) + n,( x osinx + o0 COSX)

- , x(v x %ox -co oslx) (2.13)
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The axial frictional force that the gun exerts on the projectile
A _ A

is in the direction -\I. 1ts magnitude 1is V • V =f. Since v FO 0,

Eq. (2.13) yields

f= pl - R - m1 (2.14)

By definition,

,A 
+

\o = 0 "O=1 + + ke 3 (2i)

Consequently, in scalar form, Eq. (2.13) is

1 I-a(plA - R - mk) + MC [(fc 3 -Yc2)sinx + C1cosXi

- Z [ oc 3 - Y%2)cosx - CIsinx]

1,2 = 0(plA - 1 - mg) + mw 2 [(yl 1 " ze3 )sinx + c 2cosx]

- Wo[U(yc- - CxCosx- C9Sinx]

3 = y(plA - + - mg) 4 mw2 ((IF 2 - Be1)sinX + C3COSX]

- nL(ac 2 - CI)Cosx - e3 sinx] (2.16)

The vectors C0 and v x C0 are perpendicular to the axis of the

tube. The second expression in FEq. (2.13) represents centrifugal forco. It

is zero if the eccentricity C'0 is zero.

In addition to the force F, tile gull oxperiences thie. breech force

-VPoA from the gases.

2.4 MOMENT ON THE PROJECTILE

In view of Eq. (1 .43) , the moment about the center of mass of the

projectile of all the forces that act on the projectile is M' - ex\(lA - )

(In Eq, (1..43), R was neglected.) The components of this inoment on the

principal axes of the inertia of the projectile are obtai.nled by taking the
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scalar products of the moment with a, b, and c. By virtue of Eqs. (2.3)

and (2.4), Euler's equations (Ref. 3) yield

" a' • a = (plA - R) x v # a + i1cu - (i2 - )aye

AA 2
MI' b = (plA - R)e x v • b + i203 - (i3 - il)Ycy

A A2

M' • c = (plA - R)e x V c + i 3  - 1 - ) (2.17)

If U is any vector, aa • U + bb • U + cc * U U. Consequently, Eq. (2.17)

yields

M (plA -R) x v + (ila + ib + biyc) - [(i -i)ya
1^2 3

+ (i 3 - il)ycb + (iI - i 2)Otc] (2.18)

The constant vectors v = ia + j 0 + ky and 0 = i + je2 + k are

considered to be known. Also, X(t), W = x, pl(t) and R(t) are regarded as
A A

known functions. Accordingly, in view of Eqs. (1.11) and (2.9), a, b, c,

and e are known vector functions of t. Consequently, Eq. (2.18) is an

explicit vector formula for the moment M'(t). Equation (2.10) is a

representation of the vector product e x v that occurs in Eq. (2.18).

Accordingly, the vector M', defined by Eq. (2.18), may be resolved into its
A A AA AA

i, j, k components. Setting MI' = iNI + jM ' + kM 1 , we get

MI' = (plA - R)[c 1 sinx - a(ace 1 + ýE2 + yc 3 )sinx

+ (yc 2 - $• 3 )cosX] + [ia -• W2 2  3 i)8y]

2' 22
+ ( + y)cosx] + [ W (13 - il)'yc] [cxversX

_ - +ysinX] - (i - i 2 )a] [ycversX - ýsinX]
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2 (plA - R)[ 2 sinx - 8(cs 1 + OC2 + Ye 3 )sinx + (ME; 3 -YE1)cOsX]

+ [ ai - w 22 - i3)y] [ctB'versx + ysinx] + [ti 2 8

2 _. (i 3 i al)Y] 8 + (72 + a2)cosx] + [Li3Y

r _ i2)c8j [$yversx - asinx]

43' = (p 1A - R)[essinX - y(e 1 + 82+ y 3 )sinX + (SE 1 - cE2)coSXI

+ [di Ix - w (i 2 - i 3 )ay] [ycversx - fsinx] + [Li24

_ 2 (i 3 i1)ya] [Syversx 4 asinx] + [•i 3y _ 2(i 1 I i2)48]

[2 + (2 + $2 )cosx] (2.19)

where versx = 1 - cosx.

The moment R of the contact forces that the projectile exerts on

the gun about the origin %' is given by Eq. (1.41); namely,

r= r x F-H' (2.20)

A +

where r-vs v e

If the projectile is balanced, 0 = 0 and v lies along a

principal axis of inertia of the projectile - say v = k. Then Eq. (2.19)

yields M1 ' = M2 ' = 0 and M3 ' i i3w. In this case, M3' is the rifling

torque. For an unbalanced projectile, the rifling torque may be defined as
A A

M' v v, where M' is represented by Eq. (2.18). The term (plA - R) x v

cancels out of the scalar product NI' • .
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SECTION 3

"FORCES AND MOMENTS ON A FREELY-RECOILING

RIGID GUN THAT IS CONSTRAINED AGAINST ROTATION

3.1 INTRODUCTION

A rigid gun translates freely along an inclined guide, represented

by an inclined plane in Figure 2. It is constrained against rotation. The

angle 0 of the inclined plane may differ from the angle of elevation 0 +

of the barrel. Air resistance to motion of the projectile and effects of

gravity are included in the analysis. It is questionable whether gravity is

meaningful in this problem, since it would cause the system to slide down

the inclined plane with increasing speed. It is easily eliminated, however,

by setting g = 0.

In addition to notations introduced previously, a few new

notations are added.

p is a unit vector along the axis of the recoil guide (Figure 2).

ý,n are rectangular coordinates fixed in a Galilean reference

frame that contains the recoil guide (Figure 2).

u is the recoil displacement along the guide (Figure 2).

RK is the vector from the origin of the coordinates (E,n) to the

center of mass of the projectile (Figure 2).

3.2 MOTION OF THE SYSTEM

The velocity of the projectile relative to the gun is s. The

component of this velocity along the guide is scosý, as is seen by Figure 2.

Consequently, the momentum of the system ip the direction of the guide is

m(scosý - U) - Mu = mscoscj - (M + m)u

"The component of external force on the system in the direction of

the guide is

-(M + m)gsinO + (Apl -APo - R)cosý

where R is the resisting force of air in the tube ahead of the projectile.

*• Since the external force is equal to the c-ate of change of momentum,
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m~coso - (M + m)i- -(M + m)gsinO + (Ap 1 - Apo R)coso

or

os- (Ap1 - Apo - R)
S= gsinO + M + s M + m cos- (3.1)

Since the gun is constrained against rotation, the absolute angu-

lar velocity of the projectile is

A

w VW (3.2)

Since w, s, and R are regarded as known functions of t, Eqs. (3.1) and (3.2)

determine the motion of the gun and the projectile.

3.3 FORCES IN THE SYSTEM

The resultant force of contact that the projectile exerts on the

tube is F. The resultant force of contact that the tube exerts on the

projectile is -W. If the gun is regarded as a free body, the net force on

it is

F - Ap0 v + Mg (3.3)

where pO is the gas pressure at the breech. The net force on the projectile

is

-F +mg÷ (Ap- R)v (3.4)

where p1 is the gas pressure on the base of the projectile. Consequently,

by Newton's law

-F + mg + (Apt - R)v = mR1  (3.5)

By Figure 2,

4 = e + vs + c (3.6)
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Also,

e e 0 -u (3.7)

where e is the initial value of e. Hence,
0

R1 = e0 -pu + vs + 6 (3.8)

Therefore,

A A..

1= -U + Vs + 6 (3.9)

Equations (1.11) and (2.5) are again applicable. Equations (3.1), (3.5),

(3.9), (1.11), (1.59), and (2.5) yield

AA A2 A

amg + (Ap 1 - R)V + pimgsinO + ' + 1 A

R)cos¢ - mrs+ 2 x C sinX + c cosx) - mW(V x x cosX

- 0 sinX) (3.10)

The magnitude of the axial friction force on the projectile is F V = Ff.

Hence,

2 pS+ msin2 + -mApO co2 (.1

rf -mgcosesiný + (Ap 1 - R -ms) M+m + cos2 (3.11)

If M F f reduces to Eq. (2.14), aside from the g-term which was neglected

in the derivation of Eq. (2.14).

3.4 MOMENT ON THE PROJECTILE

Since the motion of the projectile relative to the gun is

presumed to be prescribed, the recoil of the gun merely superimposes a

translation on the absolute motion of the projectile. The recoil has no

effect on the angular velocity of the projectile. Therefore, in view of

Euler's equations (Ref. 3), it has no effect on the resultant moment about

the center of mass of the projectile. Likewise, gravity has no effect on
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this moment. The theory of moments on a projectile in a motionless rigid gun

consequently is directly applicable to the recoiling gun. The moment NI

about the center of mass of the projectile is again given by Eq. (2.18).

The components of Mf' are again given by Eq. (2.19).

4
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SECTION 4

RECOILING RIGID GUN WITH OFFSET BREECH

AND FIXED TRUNNION

4.1 INTRODUCTION

If the center of mass %if the breech of a gun lies below the axis

of the tube, the recoil causes the muzzle to jerk upward when the gun is

fired. Because of its spin, the projectile then exerts a gyroscopic

couple that tends to turn the tube sideways. It is assumed in this section

that a constraint is provided which prevents rotation of the gun about a

vertical axis. Then the spin of the projectile has no effect on the motion

of the gun. Also, because of this constraint, offsetting of the breech

block to the right or the left has no kinematic effect. When the gun is

fired, each particle describes a curve that lies in a plane perpendicular to

the axis of the trunnion. Because of the constraint provided by the

trunnion, the gun has only two degrees of freedom. The projectile adds

another degree of freedom to the system.

Figure 3 is a schematic side view of the gun. The trunnion is

fixed in a Galilean reference frame; e.g., the earth. The recoil mechanism

is represented schematically as a spring in a slot. One end of the spring

is attached to the breech block, and the other end to the trunnion. The

slot slides freely over the fixed trunnion. The spring need not be Hookean.

Rather, the force F exerted by the, recoil mechanism is regarded as an

unspecified function of u and u, where u is the displacement of the breech

along the axis of the slot (Figure 3). Accordingly, the recoil mechanism

may contain nonlinear springs and nonlinear dashpots. Also, Coulomb

friction is admitted. For generality, the line of action of the recoil

mechanism is not taken parallel to the axis of the tube.

The projectile is considered to be a body of revolution with

its center of mass on its axis of symmetry, and with one principal axis of

inertia coinciding with the axis of symmetry i.e., the projectile is

perfectly balanced.

4.2 NOTATIONS

Some deviations from previous notations are necessary. Also, a

few notations are added.
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x,y are rectangular coordinates with the y-axis vertical, and the
origin at the trunnion. They are fixed in a Galilean reference frame

(Figure 3).
a is the angle between the axis of the tube and the axis of the

recoil mechanism. It is a constant (Figure 3).
u is the displacement of the gun along the axis of the recoil

mechanism (Figure 3).

.,n are rectangular coordinates scribed on the breech. The C-axis

is the axis of the recoil mechanism.

e is the angle between the ý and x axes. Generalized coordinates

are 0, u.

•o01o are the n, r coordinates of the center of mass of the

projectile before firing.

•., are the C, n coordinates of the center of mass of the gun.
x,y are the x, y coordinates of the center of mass of the gun.

Xoy0 are the x, y coordinates of the center of mass of the

projectile before firing.

C /•!rlare the ý, n coordinates of the center of mass of the
projectile at time t.

xl'Yl are the x, y coordinates of the center of mass of the

projectile at time t.

F0 is the force of gas pressure on the base of the tube at time t.

F1 is the net force driving the projectile at time t (force of gas

pressure minus the friction of the barrel). F1 includes the resistance of

air ahead of the projecti.le.

P(u,u) is the force that the recoil mechanism exerts on the

breech.

s is the distance that the projectile has traveled relative to

the gun at time t.

M is the mass of the gun.

in is the mass of the projectile.

I is the moment of inertia of the gun about a transverse axis

through the center of mass of the gun.

i is the moment of inertia of the projectile about a transverse

axis through the center of mass of the projectile.

,r is the kinetic energy of the system.
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g is the acceleration of gravity.
QJQ 2 ,Q3 are components of generalized force. 6W = Q1 6U

+ Q260 + Qs6s.

4.3 COORDINATE TRANSFORMATION

By Figure 4,

x = - u)cosO - nsinO

y - u)sinO + ncosO (4.1)

Consequently,

x= - u)cosO - nsinO

y= T- u)sinO + ricosO (4.2)

X - u)cosO - nOsinO

YO = (C O, u)sinO + ro0cosO (4.3)

X1 = (t1 - u)cosO - n sinO

Y- u)sinO + lCOSO (4.4)

Also, by Figure 3,

=0 + scosa

i1 = Y0+ ssinct (4.5)

Therefore,

X = (0 - t)cosO - 0osinO + Scos(O + (t)

s0
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Y ( u)fsinO + rToSO + ssin(O + a) (4.6)

By Eq. (4.2),

;2 + y2 ) 2 )2 + ( ,-)(4.7)

By Eq. (4.4),

+ '2 =- u) + 2 + * - *2 (4.8)

By Eq. (4.5),

I sinci (4.9)

4.4 KINETIC ENERGY

The kinetic energy of the gun is

11. 1;2 +1 }M(2 -9'g 2• , M X- + Y -)

The kinetic energy of the projectile is

T i62 + y 1 I12 + 2
p 2  2 1 1

Consequently, in view of Eqs. (4.5), (4.7), (4.8), and (4.9), the kinetic

energy of the system is

1(I + i)6 2 + 2* 2 -' 2

2 - ui) 0 + u+ 116)

+ }•m(5( 0 + scosct - ii) + :sinci] 2

Sm [cos • -- 1 + ssincz)]2" (4.10)
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4.5 GIiNURALIZED FORCE

If the coordinates (u,O,s) receive virtual increments (6u,60,6s),

tile work of all the forces that act on the system is a linear for,, in those

increments; i.e.,

6W = Q16U + Q260 + Q36s (4.11)

QI9 Q2, Q3 are called "components of generalized force."

Tlhe virtual work of gravity is

6Wgr M -MgS-y - mg6y 1

By,1 Eq. (4.2),

67 -(sinO)6u + (-- u)cosO]6O - (TjsinO)60

By Eq. (4.6),

6Yl- [(ý 0" u)cosO - n10sinO + scos(o + o)160 - Susilno

+ sin(8 + cQWs

Consequently,

6W = (M + m)gsinO 6 u - Mg [(u"- u)cosO - iisinO].3Ogr

- mg[((0 - u)cosO - n0osinO] 6 0 - mgscos(O + a)6O

- mgsin(O + a)6s (4.12)

The virtual work of gas pressure on the breech (see Figure 3) is

SWbr -- -0 COS(O + X)x 0 0 Si(O + )y
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Consequently, by Eq. (4.3),

SWbr = F0 cosa6u - FO[(% - u)sina - nocosa]60 (4.13)

The virtual work that the recoil mechanism performs on the breech is

6W = -F6u (4.14)r

The component of absolute virtual displacement of the projectile

along the axis of the tube is

6XlcOS(O+(a) + 6ylsin(8 + a)

With Eq. (4.6), this reduces to

6s- 6ucosa + 0- u)sinca6O - n0coscL6O

Consequently, the virtual work performed on the projectile is

6W = F 6s - F 6ucosa + F1 (ýO - u)sin6O - F1 IioSao (4.15)
pr 1 1

Equations (4.11) to (4.15) yield

Q= (M + m)gsinO + (F 0 - F1 )cosa - F(u,u)

Q -Mg[(T- u)cosO -nsinO] - mg[(0 - u)cosO - nosinO]

- mgscos(O + a) - (F0 - FI)[(0 - u)sina - noCosa]

Q 3 -mgsin(O a c) + F1  (4.16)
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The component Q2 may be identified as the counterclockwise moment about the

trunnion of all external forces acting on the system. The force: F0 and F

are regarded as external forces.

4.6 LAGRANGE'S EQUATIONS

The Lagrange equations are

d @T. aT

,I
d (T
t-r) = Q2

-(-+) _- •s = Q3 (4.17)

The term OT/aO is missing because T does not depend on 0 (see Eq. (4.10)).

"The derivative 31'/30 may be identified as the angular momentum of the system

about the trunnion. Consequently, the second Lagrange equation expresses the

fact that the moment of all the forces about the trunnion equals the rate of

increase of the angular momentum of the system about the trunnion. It

might be argued that F and F1 are internal forces, and, in the absence of

gravity, the ang!..ar momentum of the system about the trunnion is constant.

However, this is true only if the gases in the tube are included in the

system. Conscjiuently, it is best to regard F0 and F as external forces.

Force F1 may include the resistance of air in the tube ahead of the

projectile, which is clearly an external force.

With Eq. (4.16), the first Lagrange equation yields,

(M + m)ii + (MN + mn + nssinr0O - micosa - (M + m)u0 2

- .2+ (M + mo + mscoscz)0 + 2ms~sincz + F(u,u)

= (M + m)gsinO + (F0 - F )Cosa (4.18)

0



By Eq. (4.10),

DT + m(n + ssina)]•+ [I ÷ i ÷M(" u)2 + •2

m(o u + scosca) + m(r0 + ssinc)2]0

+ m[(( - u)sina - 0oCosa]; (4.19)

Accordingly, by Eqs. (4.16) and (4.17), the second Lagrange equation is

_{[Mn+ m(n0 + ssina)lu + [I + i + M(f- u)2 + M2dt0

2
K - u + scosct) + m(n 0 + ssia) ']6 + m[(0 - u)sina

"- n ;osCi]}= - Mg - u)cosO - nsinO] - mg[(0 - u)cosO

no OsinO] - mgscos(O + a) (F0  F 1

- u)sinm - no cosa] (4.20)

The Lagrange equation corresponding to s is

"" u)sina - nocosc]b + g- Ucosc - - u)cosc

"- 2s 2uOsinm - si = -gsin(+ + + + (4.21)

Equations (4.18) to (4.21) are simplified considerably if a =0.

The displacement s of the projectile and the base pressure force

"F 0 may be regarded as known functions of t. Equation (4.21) may be used to

eliminate F1 from Eqs. (4.18) and (4.20). After F1 is eliminated, Eqs.

(4.18) and (4.20) are two nonlinear coupled second-order ordinary
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differential equations that determine the functions u(t) and O(t), if

initial values uo, U0 1 00, 00 are given. After u(t) and e(t) are determined,

FI(t) can be calculated by Eq. (4.21).

Rotary friction and rotary spring resistance in the trunnion have

becn disregarded, but their inclusion in the equations is simple. The

right side of Eq. (4.20) is merely augmented by a term -•(6,0), which

represents the resisting moment of the trunnion.

If the system starts from rest, the quantities u, u, 0 are small

while the projectile remains in the barrel. Consequently, it is reasonable

to linearize the differential equations in these variables. At least, this

approximation provides a start for an iterative solution of the nonlinear

equations.
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SECTION S

CONCLUS IONS

The equations are rather complizated, but they appear to be

amendable to numerical treatment with a digital computer. No numerical

results are included in this report.

Section 1 treats a gun that is unsupported. In an actual gun,

the effect of the recoil mechanism may be negligible during the few

milliseconds that the moving projectile remains in the barrel. The trunnion

provides a constraint, but it may be temporarily ineffective if there are

appreciable clearances in the bearings. Consequently, the unsupported gun

might not deviate unduly from reality in some cases.

Equations (1.31) are the key equations in •_2ection 1. For a

balanced projectile, they reduce to Eq. (1.37). The unknowns in Eq. (1.31)

or (1.37) are the angular velocity components (W1 ,W2 ,W3 ). Equations (1.31)

or (1.37) are linear algebraic equations in these variables. Consequently,

they are immediately solvable. After (W1 ,W2 ,W3 ) are calculated, the

direction cosines (Pi ,mi,ni) of the principal axes of inertia of the gun

are determined as functions of time t by solving the nine linear first-

order differential equations (1.33) or, alternatively, by solving the three

nonlinear first-order differential equations (1.36). Apparently, these

equations must be solved numerically. After (i.,mi,ni) are determined,

the motion of the center of mass is determined by Eq. (1.4). Thus, the

motion of the system is determined completely, since the motion of the

projectile relative to the gun is presumed to be known. Since the angular

velocity components (WI,W 2 ,W3 ) have been calculated, the components (M1 ,

SM2 ,M3 ' of the moment M (exerted about the center of mass of the gun by the

contact forces of the projectile) are determined by Euler's dynamical

equations for a rigid body (Eq. (1.46)). The force F that a balanced

projectile exerts on the tube is determined by Eq. (1.55). For an

unbalanced projectile, this force must be augmented by the corrective terms

in Eq. (1.66). The rifling torque and the axial friction force on the

projectile can be calculated directly after the vectors R and F are

determined.
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Section 2 treats a gun that is immovable. The force F that the

projectile exerts on the gun is given, in this case, by Eq. (2.13), or, in

scalar form, by Eq. (2.16). The moment 9' about the center of mass of the

projectile of the contact forces imposed by the tube is given by Eq. (2,18),

or, in scalar form, by Eq. (2.19). These equations are explicit algebraic

formulas for F and MI. Other pertinent forces and moments are immediately

determinate when F and N' are known.

Section 3 treats a gun that translates freely along a guide, but

it is constrained against rotation. In this case, the moment 9' is the

same as for the fixed gun, treated in Section 2. The recoil displacement u

is determined by integrating Eq. (3.1). The force of contact F that the

projectile exerts on the tube is given by Eq. (3.10). The magnitude of the

axial frictional force on the projectile is given by Eq. (3.11).

Section 4 treats a gun with a trunnion and a general type of

recoil device (see Figure 3). The system has two degrees of freedom,

corresponding to the recoil displacement u and the angular displacement e
of the gun. A third coordinate s is introduced. It represents the axial

displacement of the projectile with respect to the gun, but, since this is

,5 presumed to be given, the Lagrange equation corresponding to s merely

determines the net driving force F1 on the projectile. After F is

eliminated, Eqs. (4.18) and (4.20) are two nonlinear second-order ordinary

differential equations that determine the functions u(t) and 0(t), if

initial values u0B' ;0P O 0 are given. A numerical program to carry out

this solution is needed.

Within the frameworks of the mathematical models that are used,

the analyses are exact. However, the problem of gas dynamics in the tube is

not rigorously separable from the problem of dynamical response of the gun.

The effects of momentum and kinetic energy of the charge requires further

study.

Finally, it may be advisable to issue as separate complete working

reports the results of Sections 1, 2, 3, and 4.
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APPENDIX A

DISPLACEMENT VECTOR FIELD OF A RIGID BODY

This appendix presents a derivation of the displacement vector

• field of a rigid body that undergoes an angular displacement x about an axis

A with direction v relative to given rectangular coordinates (&,n,r). The

axis A is conveniently taken to pass through the origin 0 (Figure A-1).

A particle P of the body describes a circular arc C of radius a,

whose plane is perpendicular to axis A, and whose center M is on axis A.

The displacement vector q of particle P may be resolved into components q1

and q2' such that q, is tangent to circle C at the initial point P, and q2

is parallel to the radius MP. The radius vector OP is denoted by p.

By Figure A-l, it can be seen that I P x 4 a, where the

notation 1^ x p denotes the magnitude of the vector v x p. Also, v x p

has the direction of ql" Consequently,

q, = x psinX

The magnitude of q. is

q= a(l - cosx)

The direction of q 2 is that of the vector v x (v x p). Also, vx (v x P)I =

a. Therefore,

q2 = Vx (V x p)(l - cosx)

Since the displacement vector of particle P is q ql + q

q v x psinX + v x (v x p)(l - cosx) (A-1)

The vector triple product in Eq. (A-1) may be expanded by means

of the identity

Tx (T x T) = W F f- " XK

61

7 '4 - i i - . • • , . , i . , . " - " 7 - " ' - • " - ? ' ' i " " , " " ' . - " ' ' " 7 '



P q ,

C q,2 I

aa

/ J*
/

M

Figure A-I. Angular Displacement of Rigid Body
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The particle P is displaced from position p to the position Ri p + q.

Consequently,

R = v x psinx + Tcosx + vv • p(l - cosx) (A-2)
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APPENDIX B

M4OMENTUJM PRINCIPLES

An arbitrary mechanical system is referred to a Galilean reference

frame. The momentum of the system is

where v is the velocity of the mass particle dm, and the integral extends

throughout the system (Figure B-i). Also, v = dr/dt, where r is the radius

vector from the origin 0 to particle dm (Figure B-I). Consequently,

Gdt

Furthermore,

f dm = mi0

where m is the mass of the entire system, and TO is the radius vector from

point 0 to the center of mass of the system. Therefore,

dr 0
M = mv0  (B-i)

where v is the velocity of the center of mass of the system.0 .2

The angular momentum of the system about point 0 is

, Jri x vdm

Likewise, the angular momentum of the system about another point P is

H J x Vdm

211. L. Lanqhaar and 4. P. Boresi, Erngineering Mechanics-Dynanlcs (U), Mcgraw-

Hill, New York, 19Z9, Art. 15-10.
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-~ Figure B-1. Arbitrary mechanical system
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"where 0 is the vector from point P to the mass particle din. By Figure B-I,

r D + P where D is the vector 6>P. Consequently,

fI, - B) x vdin Jrxvdm i-x UJdm

TIhere fore,

Equations (B-i) and (B-2) yield

H =%H - mD xv 0  (B-3)

Equation (B-3) serves to transfer the angular momentum from one reference

point 0 to another reference point 1).

If the system is free from external force, O and U are constant
vectors. Then, by Eq. (B-2), lI, is a constant vector. In particular, if

-- 0 0 and G 0, it follows that i--1 0, where P is any point.
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APPENDIX C

REMARKS ON VlCTOR ANALYSIS

In this Appendix, a brief treatment of vector analysits is

presented. For more details, see Reference 2, Chapters 1, 6, 8 and AS.

In this report, a letter with a bar over it denotes a vector. For example,

T stands for the direction and magnitude of a force, althoug•h it does not

signify the point at which the force acts. Ordinarily, the point of action

of a force is designated by a statement. By definition, the letter F

represents only the magnitude of vector F. Consequently, F is a non-

negative number. A letter with a caret over it denotes a vector of unit
A

magnitude. For example, F designates the direction of force F.

The vector equation K - W signifies that vectors X and F have

the same magnitude and the same direction, but not necessarily the same

point of action. The vector -F is defined to have the same magnitude as

vector F, but the opposite direction. The vectors F and -T need not have

the same point of action, For example, if P denotes a force that acts on a

body, the reaction of the force is -F,

If k is a positive number, the product k0 is defined to be a

vector with the direction of f , and with magnitude kF. If k is a negative

number, the product kF is defined to be) a vector with the direction of -T",

and with magnitude k F, where IkI is the absolute value of k. In view of

these definitions, FF..

The resultant T of two vectors F and F2 is called the sunk of the

vectors. The process of obtaining the sum or resultant of two vectors by

the well-known parallelogram construction is called vector addition.

Symbolically, F -- + F2 - I'ý2 + FI' It is to be observed that the relation

S= FI + TF2 does not imply that F = F1 + F2 . In general, F1 + F 2 is greater

than F, since the three vectors F, F1 , F2 form the sides of a triangle.
By repeated applications of the parallelogram construction, one

obtains the polyn�.o construction for the sum of a number of vectors. For

example, if forces FIJI F'2 P 'VF4 act at a point P of a body, their

resultant F is obtained by arranging the vectors Fly 1: 29 F:3 , V-4 in a chain,

T
This convention is not always used in this report. For e.xamlple, M denotes
the moment of a Jorce, but M1 stands for the mass of the guni. No confPusiron
should occur, since notations,, ae ca~pJoined.
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maintaining the proper directions of the vectors. Then the line segment

from the initial point P to the terminal point of the chain represents the

resull .nt force, Figure C-1. Symbolically, F= F1 + F2 + F 3 + F 4' Vector

addition is commutative and associative; i.e., the order of vectors F1, P

F, F in the polygon is irrelevant, and any subset of the vectors in the
3A4

polygon may be replaced by their resultant. Symbolically, this means that

the vectors in the sum F1 + F 2+ F 3+ F may be permuted in any way, and

parentheses may be introduced arbitrarily in the sum.

Subtraction of a vector is defined to be addition of the negative

vector, i.e., A - B = A + (-B). Accordingly, to subtract a vector B from a

vector A, we reverse the direction of B, and add the reversed vector to A.

A direction can be defined only with respect to some reference

frame. Consequently, vector analysis cannot ba entirely divorced from

coordinate systems. For definiteness, only right-handed systems of coordi-

nates are considered. -f (x,y,z) is a right-handed system of rectangul

coordinates, the thumb, the forefinger, and the middle finger of the right

hand can be directed in the positive senses along the x, y, and z axes,

respectively. Frenuently it is convenient to designate the directions of

rectangular coorc .;iate axes (x,y,z) by three unit vectors (i,j,k) that

coincide in direction with these axes, Figure C-2. Then the position vector

R from the origin to the point P:(x,y,z) satisfies the vector equation,

R ix + jy + kz (C-1)

The orthogonal projections (F 1 ,F 2 ,F ) of any vector F on the axes (x,y,z)
satisfy the equation

F-= iF + jF + kF (C-2)1 i 2  k 3

Addition and subtraction of vectors, and multiplication of vectors

by s.:alqrs conform to the axioms of elementary algebra. Consequently,

cert )peratiors with vectors can be performed as in scalar algebra. For

e,.arip.e, algebraic reduction of the vector equation

F F 3 [T 2(B-A) +5X 7ff]
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yields F= 24A - 27B

The angle between a vector and a cartesian coordinate axis is

called the direction angle of the vector with respect to the coordinate

axis. The three direction angles (ct3,y) of a vector with respect to three
rectangular cartesian axes (x,y,z) determine the direction of the vector,

Figure C-3. The direction angles of a vector are specified to lie in the

range 00 to 1800, inclusive. Consequently, a direction angle is determined

uniquely by its cosine. If the cosine is negative, the angle is greater

than 900. The cosines of the direction angles of a vector are called the

direction cosines of the vector.

If (a,8,y) are the direction angles of a vector F, and if F

denotes the magnitude of F,

F =Fcos a, F= Fcos$ , F Fcosy (C-3)2 F3

A direction in space may be designated by a unit vector. If F is a unit

vector, F = 1. Accordingly, Eq. (C-3) shows that the orthogonal projections

of a unit vector on the x, y, and z axes are identical to the direction
cosines of the vector.

By trigonometry,

2 F2 2 F32 (C-4)

Equations (C-3) and (C-4) yield

2 2 24cosa(+cos2 +cosy= 1 (C-5)

Let A and B be two vectors whose projections on rectangular

cartesian axes (x,y,z) are (A 1 ,A2 , 3 ) and (BP,B2 ,B3 ). The expression

A B1 + A2 B2 + A3 B3 is called the scalar product (or dot product) of the

two vectors. This expression is conventionally denoted by A * B. It is

seen by this definition that A * B = B - A. Accordingly, scalar multiplica-

tion of vectors is said to be commutative. The importance of the scalar

product arises fror a geometric identity that is expressed by the equation,
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A 1 B 1 + A2B2 + A3B = ABcosO (C-6)

where A and B are the magnitudes of vectors A and B, and 0 is the angle

between these vectors.

Several special cases are to be noted. If A = B, Eq. (C-6) yields

A2 A= 2 A 22 + A3 2, which is equivalent to Eq. (C-4). If T is a unit vec-

tor (B = 1), it is apparent from Eq. (C-6) that 1 • B is the orthogonal

projection of vector W on a line with the direction and sense of vector B.

If K and T are both unit vectors, their projections on the (x,y,z) axes are

identical to their direction cosines. Hence,

cos a1 cos M2 + cos 01 cos 82 + cos Y 1 cos Y2 = cos O (C-7)

where (a 1 ,B 1 ,y 1 ) and (a 2 ,1 2 , y 2 ) are the direction angles of vectors A and

B, and e is the angle between these vectors. If A ý. 0 and B 0 0, but

T • Y = 0, vectors T and 1 are perpendicular to each other (0 = 900).

Occasionally an expression of type A(B • C) arises. The

parentheses may be removed; i.e.,

A(B. •) =AB.C

There is no ambiguity in the expression A B • C, since no meaning is here

assigned to the expression A B standing alone. Hence, A B * C is a vector

with the direction of vector A and with magnitude ABCcos 0 , where 0 is the

angle between vectors B and C.

Another expression that sometimes arises is

*K+ B*K+ ^A Kii -+ kk-•A

Since the (x,y,z) components of K are A1  i * A, A2 = j A, and A3  k A,

this reduces to

iA1 + jA2 + kA =A
1 2 3
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Figure C-3. Direction Angles of a Vector

rF

Figure C-4. Mloment of Force, r'f- x

74

mte.
-TI,
"'? i : , ." . -Z• -,• : .. i" . i• • T . - .- . . : Z " . .." ' " _". . ." . " ' , • ." . . .. - . . ..-""



Consequently,

ii A +jj A + kk A =A (C-8)

Tis relation is an identity.

By cartesian expansion, it is easily seen that

A ( + B+C)

Since also A , B B : A, the scalar product conforms to the rules of

elementary algebra.

From two given vectors, A and B, a third vector C may be derived

by the definition,

C1 A 2B3 A 3B2' C2 =A 3 B1 - :3 P C3 =A 1B2  A 2B1 (C-9)

This may be expressed concisely in determinant notation:

1 j

C-- A1 A2  3 =AxB (C-O)

B B 2 B3

The vector C is called the vector product or cross product of A and B. It

may be shown by geometry that the magnitude of C is

C = ABsine (C-11)

where 0 is the angle between vectors A and B. It follows from Eq. (C-9) that
C • A = C • B = 0. Consequently, vector C is perpendicular to both of the

vectors A and B. It can be shown that, if the coordinates (x,y,z) are

right-handed, the sense of vector C is that in which a right-hand screw

advances when turned from A to B.

The vector product is not commutative. Since a permutation of

two rows in a determinant changes the sign of the determinant, Eq. (C-10)

75



shows that B x A = -A x B. In spite of this anomalous behavior, the vector

product has other properties in common with ordinary multiplication. In

particular,

R x (A+D) =•R•+Rx , (A +B) xR-A- xR+BxR

(C-12)

Hence,

(A +B) x (C +D) A x C +A x D +B x C B x D

It is seen from Eq. (C-11) that the vector product of two parallel vectors

is zero, since 0 0 0. Hence,

ixi=jxj =k x k 0

Also, by Eq. (C-10)

i j k
Ix3 = 1 0 0 =k

0 1 0

A A:

Similarly, k xi = J and 3 x = i. Evidently,

SxB = (iA + A+ iA3 ) x (1BI + B2 + kB3 )

Algebraic expansion of the right side of this equation leads back to

Eq. (C-9).

The expression A • (B x C) is called the scalar triple product.

It may be written without parentheses as A B. x C, since (A • B) x C has

no meaning. The expression A B B x C is a scalar. Cartesian expansion

yields the determinant form,
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A A A1 2 3

A Bx C= B B B (C-13)1 2 3

C1  C2  C

Since a transposition of two rows in a determinant merely changes the sign of

" the determinant,

Te ixt=F. CxK9 x ' x (C-14)

The absolute value of A T B x U represents the volume of the parallelepiped

having concurrent edges represented by A, F, and C.

The vector triple product is A x (B x C). The parentheses are

essential in this expression. By cartesian expansion, the following identity

can be verified:

A x (B xc) = BA C- CA B (C-15)

This may be memorized as the "Back-Cab" formula.

The vector product is useful for representing moments of forces.

Let a be the perpendicular distance from a given point 0 to the line of

action of a given force T, Figure C-4. The moment of force F about point 0

is defined to be a vector i with magnitude Fa. The vector M is defined to be

perpendicular to the plane determined by the force F and point 0. The sense

of vector 4 is defined by the right-hand-screw rule; i,e., vector M points in

the direction that a right-hand screw would advance if force F should cause

it to turn about an axis through point 0. For the case illustrated by

Figure C-4, vector 14 is directed toward the reader, perpendicular to the

plane of the paper. Let the vector OP (Figure C-4) be denoted by r. Then

the conditions of the preceding definition are fulfilled by the vector

equation,

M9= r x F (C-16)

77

I



'° 

7 7 7 7

The moment of a force about an axis is a scalar. If fi is a unit

vector in the direction of axis L, the moment of force F about axis L is

ML = M • , where M is the moment of force F about any point 0 on axis L.

Consequently, by Eq. (C-16),

ML =F.fix r "Fx fi=f xF (C-17)

An infinitesimal increment dR of a vector R need not be collinear

with the vector R, Figure C-S. Consequently, in general, the vector R + d

differs from the vector R, not only in magnitude, but also in direction.

It would be misleading to denote the magnitude of vector dR by dR, since dR

denotes the increment of the scalar R. Accordingly, the magnitude of dR is

denoted by IdRI, or by another symbol, such as ds. The magnitude of the

vector R * dR is R + dR. Figure C-5 shows that dR < IdKI. If the vector

is a function of a scalar t (where t may or may not denote time), dR/dt is

defined to be a vector in the direction of dR with magnitude ds/dt, where

ds = IdKI. If R is the position vector of a particle, and if t denotes

time, -V = d/dt is the velocity of the particle and dV/dt = dR/dt2 is the

acceleration of the particle. Vectors obey the same rules of differentiation

as scalars. This may be shown by the delta method that is used for deriving

differentiation formulas in scalar calculus. For example, if Q = uR, where

u is a scalar function of t and " is a vector function of t,

Ut Q uR +uR

in which the dot denotes the derivative with respect to t. Likewise,

-- )A = •A B + A B

and - x4 = A x B+A x B

The angular velocity w of a rigid body is a vector quantity. For,
let wi represent the angular velocity of a rigid body whose motion at the
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instant under consideration is a rotation about an axis L. Let r be the

vector from any point 0 on axis 1. to a particle P of the body (Figure C-6).

IlTe distance of particle P from the axis of rotation is rsinO , where 0 is

the angle between the vectors r and w. Hence, the speed of particle P is

rmsin E0. The velocity v of particle P is perpendicular to the plane of

vectors r and to, and its sense is determined by the right-hand-screw rule

(if right-handed coordinates are used). Therefore,

v wx -r (C-18)
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